USE OF INVERSION TRANSFORMATION FOR MODELING
IN CERTAIN PROBLEMS OF THE THEORY
OF ELASTICITY AND PLASTICITY
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Certain possibilities of using the inversion transformation for modeling problems of the
theory of elasticity and plasticity are considered, in particular, for cases where this allows
us to make the experimental investigation on the model considerably easier to carry out,

The invariance of the biharmonic equation relative to inversion [1] was investigated by Michell 2] in
the analysis of the first fundamental problem of the plane theory of elasticity. He showed that the inversion
transformation "translates™ any such problem for any particular body into another problem of the same
physical type, but already for another body with another load. Here it is very important that the quantities
which for the solution of the new problem must be known — the contour of the body and the conditions onthe
contou ; (i.e., loads) — are simply expressed in terms of the quantities specified when solving the original
problem (loads, with accuracy up to the hydrostatic compression). Therefore inversion can be used for
modeling. The situation in the problem concerned with the static flexure of a slab is analogous [3, 4].

Here we note that inversion can be used for modeling certain other problems of the theory of elastic-
ity and plasticity which reduce to a biharmonic equation with a right side, and namely for modeling the plane
thermoelastic stationary problem, when heat emission is specified in the body and the contour of the body
is free from fixing; it can also be used for the problem concerned with the dynamic flexure of a homogene-
ous elastic slab resting on an inhomogeneous elastic-plastic foundation of the Winkler type. The mass of
the slab is an arbitrary function of the point. Conditions of the "kinematic type" are specified on the con-
tour.

In addition, inversion can be used in the case of the plane first fundamental isothermal problem for a
linearly viscoelastic body and the case of the problem concerned with the dynamic flexure of a slab on a
solid foundation, when the material of the slab possesses linear viscoelasticity and the material of the foun-
dation has arbitrary nonlinear viscoelasticity. It can be used in these two problems when the material pos-
sesses circular orthotropy (the equation is no longer biharmonic) as well as in certain other problems.

In all problems the region is considered to be finite, while in the case of plane problems, for the sake
of simplicity, it is assumed to be simply connected. In other respects the outline of the body or slab as
well as the boundary conditions (in the framework of the types being considered) can be arbitrary. We as-
sume that the center of the inversion circle lies outside the region occupied by the body. In the case of
circular orthotropy it coincides with the center of orthotropy.

In the orthonormed x, y coordinate system the thermoelastic problem and the problem of slab flexure
are described by the equations
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e Here ¢ is the Airy function; o, E, A, ¢ are constants; e(x, y) is the
% specified intensity of heat emission per unit volume; D is the rigidity of
the slab; w is the deflection; q (x, y, t) is the transverse load (a function
a b to be given); p(x, y) is the mass per unit area of the middle surface (a
Fig. 1 function to be given); p is the reactive load acting on the slab from the
side of the foundation; and p{ [} is the operator placing the function
p(t) into correspondence with the function w(t). This operator characterizes the elastic-plastic properties
of the foundation and is a given function of x, y. From the foundation we demand only that it can be de-
scribed by a "point" operator. Thus, (2) describes the flexure of the slab on an elastic-plastic foundation
of a very arbitrary type. In the case of a linearly elastic foundation p= c(x, y) w, where c(x, y} is a neg-
ative "constant.” We note that the operator p[ ] can describe not only the traditional solid foundation —
the ground — but also either damping effect of the material of the slab itself or the "point" resistance of
any external medium. '

The inverse transform
z = o/ (@® + yo?), ¥ = yo/(@® + yo?) )

can be used to model the problems (1) and (2). Indeed, substituting in (1) and (2) instead of x and y their
expressions in terms of x; and y, according to (3) and instead of ¢ and w

¢ (7, y) = Po(Zo, yo)/(x«:2 + ¥, w (2, ¥, t) = wq (To, Yo O/ (@ + yo?) (4)

we arrive at equations of the previous physical type but already with the ™ew" e, (X3, ¥o), 9 (X9, Yo, 1),
pg (X9, ¥o)» Dol 1. At the corresponding points

g = e/ + y) (5)
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The boundary and initial conditions of the new problems are simply expressed in terms of the condi-
tions of the original problems (in the case of the plane problem, with accuracy up to the hydrostatic com-
pression).

Thus, if we are given a problem of type (1) or (2), then on the basis of (3)-(8) we can choose any of
the "inversion" bodies, obtain the solution (mathematical, experimental, or mixed), and translate the results
to the original body. In particular cases a body with nonuniform heat emission or a plate with a nonuniform
mass and inhomogeneous foundation can be reduced to models with the constant eg, pg, and py[ ]. Let, for
example, it be necessary to determine the natural frequencies and natural modes of vibration of a slab (Fig.
1a) with p = 1/(x* +y%)*. After inversion we arrive at the problem for a plate (Fig. 1b) with pj = const, on
which it is easy to carry out an experiment. Alternatively, let the slab in Fig. la have an inhomogeneous
nonlinearly elastic foundation with the characteristic

i w
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where 7( ) is an arbitrary function of its argument. After inversion we arrive at the problem for the slab
(Fig. 1b) with a homogeneous foundation py(wy) = (wp). In the case of viscoelasticity the proof is analogous.

The fact mentioned in the paper that inversion can be used to model the problems (1) and (2) is not
trivial, since there are a multitude of problems with equations which are close to (1) and (2), which when in-
verted "lose" their physical type (for example, the problem of slab stability) and a multitude of problems
which, although "preserving" their physical type, have boundary conditions that are not transformed into
one another in the inversion transformation (for example, the same problem (2), but with "solid™ boundary
conditions). In the latter it is also impossible to use inversion for modeling since up to the solution of the
original problem we do not know the boundary conditions in the model.
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We consider the case of materials possessing circular orthotropy. The contour of the body or slab
and the boundary conditions can, let it be understood, possess no circular symmetry, Since the equations
are of the same type, we write only the equation of plate flexure [5]:
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Here r, ¢ are the polar coordinates, Dy, Dg, and Dpg are other constants written in terms of local
orthonormed bases, The transformation (3), (4) does not change the form of Eq. (9) [the right side isaltered
according to (6)-(8)]. We note that an equation of the type (9) would be invariant relative to (3), (4) also in
the case where its left side contains not three but five independent constant coefficients (for all fourth and
second derivatives).

The boundary conditions in the problems being considered, coinciding with the conditions in the case
of isotropic bodies, are simply transformed. Therefore inversion can be used for modeling.
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